Robôs inteligentes não estão só aprendendo, mas também ensinando

photo_65409_20160427

A vitória do AlphaGo do Google em uma partida de Go contra um ser humano revela que a inteligência artificial pode nos ensinar mais do que imaginamos.

Há pouco mais de 20 anos, um computador venceu um ser humano em um jogo de xadrez pela primeira vez. Isso aconteceu quando o supercomputador DeepBlue, da IBM, venceu Gary Kasparov em uma vitória apertada de três jogos e meio por dois jogos e meio.

Menos de uma década depois, as máquinas foram consideradas as grandes vencedoras dos jogos de xadrez quando Deep Fritz, um software executado em um PC, venceu Vladimir Kramnik, campão mundial de xadrez de 2006.

Agora, a capacidade dos computadores de competir contra a humanidade foi além, dominando um jogo de tabuleiro muito mais complexo, o Go: o programa AlphaGo do Google bateu o número um do mundo Ke Jie duas vezes em uma série de três.

Este importante marco revela quão longe os computadores chegaram nos últimos 20 anos. A vitória do DeepBlue no xadrez mostrou que as máquinas poderiam processar rapidamente enormes quantidades de informações, pavimentando o caminho para a grande revolução de dados que vemos hoje.

O triunfo do AlphaGo, no entanto, representa o real desenvolvimento da inteligência artificial por uma máquina capaz de reconhecer padrões e de aprender a melhor maneira de responder a eles. Além disso, pode significar uma evolução da inteligência artificial, em que os computadores não só aprendem como nos vencer, mas também podem começar a nos ensinar.

O Go é considerado um dos jogos de tabuleiro mais complexos do mundo. Como o xadrez, ele é um jogo de estratégia, mas tem várias diferenças importantes que o tornam muito mais difícil para um computador jogar. As regras são relativamente simples, mas as estratégias envolvidas são altamente complexas. Também é muito mais difícil calcular a posição final e o vencedor no Go.

O jogo tem um tabuleiro maior (uma grade 19×19 em vez de um 8×8 do xadrez) e um número ilimitado de peças, assim há diversas maneiras que o tabuleiro pode ser organizado. Enquanto as peças de xadrez começam em posições definidas e cada pessoa pode fazer um número limitado de movimentos a cada turno, o Go começa com um tabuleiro em branco e os jogadores podem colocar uma peça em qualquer um dos 361 espaços livres. Cada partida leva, em média, duas vezes mais turnos do que as de xadrez e há seis vezes mais opções de movimento por vez.

Esses recursos significam que você não pode construir um programa para jogar o Go usando as mesmas técnicas utilizadas para as máquinas que jogam xadrez. Computadores-jogadores de xadrez tendem a usar uma abordagem de “força bruta”, em que um grande número de possíveis movimentos é analisado para que o melhor seja selecionado.

Feng-Hsiung Hsu, um dos principais contribuintes da equipe do DeepBlue, argumentou em 2007 que a aplicação dessa estratégia para o Go exigiria um aumento de mil vezes na velocidade de processamento do DeepBlue para que fosse possível analisar 100 trilhões de posições por segundo.


Matéria completa em: http://exame.abril.com.br/tecnologia/robos-inteligentes-nao-estao-so-aprendendo-mas-tambem-ensinando/

GOSTOU DO CONTEÚDO?
Receba nosso conteúdo semanalmente por email!
Odiamos SPAM! Seu email nunca será compartilhado.